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ABSTRACT

We study g-functions and Riesz transforms related to the Bessel operators

∆µ = −x−µ−1/2Dx2µ+1Dx−µ−1/2.

The method we use allows us to characterize the Banach spaces B for

which these operators are bounded when acting on B-valued functions.

1. Introduction

In the descriptive and deep paper [6], Muckenhoupt and E. Stein defined and

studied, in the context of orthogonal expansions, parallel objects to classical

Fourier Analysis, namely conjugate functions, maximal functions, g-functions

and multipliers. The technique involved the definition of the “harmonic exten-

sion” including a careful analysis of its kernel. Then they built a conjugate
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harmonic function and proved the existence of a boundary value function, the

conjugate function. They got Lp boundedness of the conjugate function for p in

the range 1 < p < ∞ and some substitutive inequality in the case p = 1. This

method was followed later by different authors when defining classical operators

for orthogonal expansions. Five years later, E. Stein published his celebrated

monograph [8] where the same objects were again treated. They were handled

under a point of view (under our perception) based in a general analysis of a

“Laplacian”. He studied the “heat” and “Poisson” semigroups associated with

the Laplacian and, from them, he derived the rest of the operators by using

some spectral formulas.

In [1] this “semigroup approach”, suggested in [8], is followed when the (pos-

itive) Laplacian is the Bessel operator

(1.1) ∆µ = − d2

dx2
+

µ2 − 1/4

x2
, where µ > −1

2
.

The operator ∆µ is self-adjoint in L2((0,∞), dx) It can be written in divergence

form as

∆µ = −x−µ−1/2Dx2µ+1Dx−µ−1/2 = A∗
µAµ,

being Aµ = xµ+1/2Dx−µ−1/2, and A∗
µ = x−µ−1/2Dxµ+1/2 the adjoint operator

of Aµ. In [1], the Riesz transform Rµ = Aµ∆
−1/2
µ is defined and studied. It is

shown, by means of the heavy use of some estimates from [6], that Rµ is in fact

a principal value Calderón–Zygmund operator

(1.2)
Rµ(f)(x) = lim

ε→0

∫

|x−y|>ε

Rµ(x, y)f(y)dy,

a.e. x ∈ (0,∞), f ∈ Lp(0,∞), 1 ≤ p < ∞.

Rµ being a Calderón–Zygmund operator, strong Lp(0,∞) inequalities for 1 <

p < ∞ and the classical weak type (1, 1) inequality are deduced. The method

used in [1] is good enough when dealing with Lp inequalities for most opera-

tors associated with ∆µ (e.g. g-function, Riesz potentials, multipliers). But that

method did not fully exploit the structure of the operators, since it took into ac-

count neither the underlying measure space ((0,∞)) nor the similarities between

the kernels of ∆µ and the classical Laplacian. In this paper we present a method

which take care of both facts. The core of the method could be summarized as

follows: assume that a classical operator associated with ∆µ is given by a kernel

bounded by |x − y|−1. Consider the kernel of the parallel operator associated

with the classical Laplacian −∆ = −d2/dx2. In the region 0 < x/2 < y < 2x,

the difference between both kernels is controlled by a positive function L(x, y)
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which is the kernel of a bounded operator. Then the boundedness of the version

of the operator associated either with ∆µ or with −∆ implies the same property

for the other version. The concrete statement of this vague idea is explained by

Theorem 3.5.

In this paper we apply this method to characterize those Banach spaces B
for which either the Riesz transforms (see Theorem 2.1) or Littlewood–Paley

g-functions (see Theorems 2.4 and 2.5) are bounded when acting on B -valued

functions. Although we use the method explained above to obtain some geomet-

rical properties of Banach spaces, we also obtain new results in the scalar-valued

case (see Theorem 2.6).

We need to explain the extension of these operators to functions taking values

in a Banach space B . It is well known (and easy to check) that any positive

bounded operator T on Lp(Ω) for all p ∈ [1,∞] naturally and boundedly extends

to LpB (Ω) for every Banach space B , where LpB (Ω) denotes the usual Bochner–

Lebesgue Lp-space of B -valued functions defined on Ω. Indeed, this is clear

for p = 1 (via projective tensor product); the case p = ∞ is done by duality,

and the range 1 < p < ∞ by interpolation. With a slight abuse of notation

(which will not cause any ambiguity), we shall denote these extensions still by

the same symbol T . Concerning the Littlewood–Paley g-functions, we extend

their definitions to B -valued functions f by (
∫ ∞
0 ‖t∂tPtf(x)‖2B dt

t )1/2 where it is

understood that Pt, being linear and positive, has been extended to functions

taking values in B as before. Since the Riesz transforms are linear, they extend

in a natural way to the space B ⊗ Lp(0,∞) as Rµ(
∑

biϕi) =
∑

biRµ(ϕi), 1 ≤
p < ∞.

The organization of the paper is the following. In section 2 we collect the

main statements of the paper. Besides the results we described above, it is

worth noting the characterization of the UMD property by using a kind of

local Hilbert transform (see Theorem 2.2). Section 3 contains the statements

and proofs of the technical theorems which we shall use in order to apply our

method. The rest of the sections are devoted to the proofs (sometimes rather

technical) of the main theorems in the paper.

Throughout this paper C always represents a suitable positive constant and

it can change from one line to the other.

2. Preliminaries and statements of the results

In the euclidean case, it is known that the extension of the Hilbert transform is

bounded from LpB (R), 1 < p < ∞ into itself or from L1B (R) into weak-L1B (R) if
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and only if B satisfies the so-called UMD property; see [3] and [4]. Moreover, a

UMD space can be characterized by the almost everywhere convergence (ε → 0)

of the truncated integrals
∫

|x−y|>ε
1

x−yf(y)dy for every function in LpB (R), 1 ≤
p < ∞. We obtain the following parallel characterization of this property in

terms of Rµ.

Theorem 2.1: Let B be a Banach space and µ > − 1
2 . Then the following

conditions are equivalent:

(i) B is a UMD space.

(ii) For some (or equivalently, any) p, 1 < p < ∞, Rµ can be extended as a

bounded operator from LpB (0,∞) into itself.

(iii) Rµ can be extended as a bounded operator from L1B (0,∞) into L1,∞B (0,∞).

(iv) For any f ∈ LpB (0,∞), 1 ≤ p < ∞, then for almost every x ∈ (0,∞),

Rµf(x) = limε→0

∫

|x−y|>ε
Rµ(x, y)f(y)dy ∈ B .

On our way to prove this theorem, we shall get as a by-product of the method

(in fact a corollary of Proposition 3.3) the following characterization of UMD

spaces. We think it is essentially known, but it does not seem to be stated in

the literature.

Theorem 2.2: Let us define for functions f ∈ B ⊗ Lp(R) the “local” Hilbert

transform as

Hlocf(x) = p.v.

∫ 2x

x/2

f(y)

x − y
dy, x ∈ R,

and for f ∈ B ⊗ Lp(0,∞) the “partial” and “partial local” Hilbert transforms,

respectively, as

Hf(x) = p.v.

∫ ∞

0

f(y)

x − y
dy, Hlocf(x) = p.v.

∫ 2x

x/2

f(y)

x − y
dy, x ∈ (0,∞).

Then, the following statements are equivalent:

(a) B has UMD property.

(b) Hloc is bounded from LpB (0,∞) into itself for some (or, equivalently, for

any) p ∈ (1,∞).

(c) Hloc is bounded from L1B (0,∞) into L1,∞B (0,∞).

(d) For any f ∈ L1B (0,∞), there exists Hlocf(x) ∈ B for almost every x ∈
(0,∞)

The same equivalence holds with H in statements (b)–(d) in place of Hloc,

and also with Hloc and R in statements (b)–(d) instead of Hloc and (0,∞).

Let f be a function in L1(T), where T denotes the torus equipped with nor-

malized Haar measure dθ. The classical Littlewood–Paley g-function is defined
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for z ∈ T as

Gf(z) =

(
∫ 1

0

(1 − r)2‖∇Pr ∗ f(z)‖2 dr

1 − r

)1/2

.

In this notation,

‖∇Pr ∗ f(t)‖ =
(

|∂Pr

∂r
∗ f(t)|2 + |1

r

∂Pr

∂θ
∗ f(t)|2

)1/2

,

where

Pr(θ) =
1 − r2

1 + r2 − 2r cos θ

being the Poisson kernel for the disk. It is a classical result that for any p ∈
(1,∞) there exists a positive constant Cp such that

C−1
p ‖f‖Lp(T) ≤ |f̂(0)| + ‖Gf‖Lp(T) ≤ Cp‖f‖Lp(T).

When the functions f take values in a Banach space B , this equivalence holds if

and only if B is isomorphic to a Hilbert space. However, for a general Banach

space, one of the two inequalities can be true. The study of these one-sided

inequalities is the main objective of [10]. More generally, Stein introduced the

following generalized “Littlewood–Paley g-function”

Gqf(z) =

(
∫ 1

0

(1 − r)q‖∇Pr ∗ f(z)‖qB dr

1 − r

)1/q

.

Then B is said to be of Lusin cotype q (resp. Lusin type q) if there exist

p ∈ (1,∞) and a positive constant C with ‖Gqf‖Lp(T) ≤ C‖f‖LpB(T) (resp.

‖f‖LpB(T) ≤ C(‖f̂(0)‖B + ‖Gqf‖Lp(T))). It is not difficult to see that if B is of

Lusin cotype q (resp. Lusin type q), then 2 ≤ q < ∞ (resp. 1 < q ≤ 2). It is

proved in [10] that the definition above is independent of p; in other words, if

one of the inequalities above holds for one p ∈ (1,∞), then so does it for every

p ∈ (1,∞) (with a different constant depending on p). The main result of [10]

states that a Banach space B is of Lusin type q (resp. Lusin cotype q) iff B is of

martingale type q (resp. martingale cotype q). See [10] for the definition and ref-

erences about the martingale type and cotype properties. In R, the generalized

“Littlewood–Paley g-function” can be defined for any q ≥ 1 as

gq(f)(x) =

(
∫ ∞

0

tq‖∇Pt ∗ f(x)‖q
ℓ2B dt

t

)1/q

,

where ‖∇Pt ∗ f(x)‖ℓ2B = (‖∂tPt ∗ f(x)‖2B + ‖∂xPt ∗ f(x)‖2B )1/2 and, here and in

the sequel,

Pt(x) =
1

π

t

|x|2 + t2
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denotes the kernel of the Poisson semigroup for the upper half space. Then B is

of martingale cotype q (resp. martingale type q) iff for some (equivalently every)

p ∈ (1,∞) there is a constant C with

‖gq(f)‖Lp(Rn) ≤ C‖f‖LpB(Rn) (resp. ‖f‖LpB(Rn) ≤ C‖gq(f)‖Lp(Rn)).

See [5]. Even more, the equivalence of the strong type (p, p) and weak type

(1, 1) are proved. Also, it is seen that it is equivalent to consider either gq or

the “partial” g-functions

gq
t f(x) =

(
∫ ∞

0

‖t∂tPtf(x)‖qB dt

t

)1/q

and

gq
xf(x) =

(
∫ ∞

0

‖t∂xPtf(x)‖qB dt

t

)1/q

to characterize Lusin type or cotype properties.

The results in [10] were extended to general markovian symmetric diffusion

semigroups (see [5]) and a general Littlewood–Paley theory was developed for

these semigroups. A markovian symmetric diffusion semigroup is a collection of

linear operators {Tt}t≥0 defined on
⋃

p Lp(Ω, dµ) over a measure space (Ω, dµ)

satisfying the following properties: T0 = Id, TtTs = Tt+s, ‖Tt‖Lp→Lp ≤ 1 for all

p ∈ [1,∞], limt→0 Ttf = f in L2, for all f ∈ L2, T ∗
t = Tt on L2, Ttf ≥ 0 if f ≥ 0,

Tt1 = 1. The corresponding Poisson Pt semigroup defined by subordination is

again a symmetric diffusion semigroup; see [8].

Remark 2.3: Our Poisson semigroup does not fit in the theory developed in

[5], since it is not markovian. The eigenfunctions of ∆µ are {ϕy}y>0, where, for

every y > 0 (see [11, (6) and (7), p. 129]),

(2.1) ϕy(x) = (yx)1/2Jµ(yx) and ∆µϕy(x) = y2ϕy(x),

Jµ(z) being the Bessel function of the first kind of order µ. The Poisson kernel

pµ associated with ∆µ is

(2.2) pµ(t, x, y) =

∫ ∞

0

e−ztϕz(x)ϕz(y)dz, t, x, y ∈ (0,∞).

The corresponding Poisson integral was considered in [7] (and more recently in

[2]). It is defined by

Pµ,t(f)(x) =

∫ ∞

0

pµ(t, x, y)f(y)dy, t, x ∈ (0,∞),
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where f is a suitable function. This Poisson semigroup is not Markovian. In-

deed, since χ(0,∞) ∈ L∞(0,∞), the function u(t, x) = Pµ,t(χ(0,∞))(x) satisfies

the Laplace type equation ∆µ,xu − ∂2u/∂t2 = 0 ([2, Remark 2.5]). It is not

hard to see that the function v(t, x) = 1, t, x ∈ (0,∞), is not a solution of the

last partial differential equation.

Given a Banach space B , in analogy with the classical case, for any 1 < q < ∞
we define the generalized (“Bessel”) g-function

gq
µf(x) =

(
∫ ∞

0

‖t∇Pµ,tf(x)‖q
ℓ2B dt

t

)1/q

,

where

‖∇Pµ,t(f)(x)‖ℓ2B = (‖∂tPµ,tf(x)‖2B + ‖Aµ,xPµ,tf(x)‖2B )1/2.

We will also consider the “partial” generalized g-functions

gq
µ,tf(x) =

(
∫ ∞

0

‖t∂tPµ,tf(x)‖qB dt

t

)1/q

and

gq
µ,xf(x) =

(
∫ ∞

0

‖tAµ,xPµ,tf(x)‖qB dt

t

)1/q

.

We have the following parallel result to the euclidean case.

Theorem 2.4: Let B be a Banach space, 2 ≤ q < ∞ and µ > − 1
2 . Then the

following statements are equivalent:

(i) B is of Lusin cotype q.

(ii) For every (or equivalently, for some) p ∈ (1,∞) there is a constant C > 0

‖gq
µ(f)‖Lp((0,∞),dx) ≤ C‖f‖LpB((0,∞),dx), ∀f ∈ LpB ((0,∞), dx).

(iii) There exists a constant C > 0 with

‖gq
µ(f)‖L1,∞((0,∞),dx) ≤ C‖f‖L1B((0,∞),dx), ∀f ∈ L1B ((0,∞), dx).

(iv) For any f ∈ L1B ((0,∞), dx), gq
µf(x) < ∞ for almost every x ∈ (0,∞).

The same equivalences hold with gq
µ,x or gq

µ,t instead of gq
µ in (ii), (iii) and

(iv).

The result concerning the Lusin type property of the space is as follows.
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Theorem 2.5: Let B be a Banach space, 1 < q ≤ 2 and µ > − 1
2 . The following

statements are equivalent:

(i) B has Lusin type q.

(ii) For some (or equivalently, for any) p ∈ (1,∞), there exists C > 0 such

that

‖f‖LpB(0,∞) ≤ C‖gq
µ,tf‖Lp(0,∞).

As a consequence of Theorems 2.4 and 2.5 and the fact that R is of Lusin

type 2 and Lusin cotype 2, we get the following result of independent interest.

Theorem 2.6: Let 1 < p < ∞ and µ > − 1
2 . Then there exists a constant

Cp > 0 such that

C−1
p ‖f‖Lp(0,∞) ≤ ‖g2

µf‖Lp(0,∞) ≤ Cp‖f‖Lp(0,∞).

3. Technical tools

The operators H1 and H2 will denote the classical Hardy operators

(3.1) H1f(x) =
1

x

∫ x

0

f(y)dy and its dual H2f(x) =

∫ ∞

x

1

y
f(y)dy,

which are known to be bounded on Lp(0,∞), 1 < p < ∞ and from L1(0,∞)

into L1,∞(0,∞) (see [12, p. 20], for 1 < p < ∞; the case p = 1 is clear.)

Definition 3.1: Let B 1 and B 2 be a pair of Banach spaces, and K(x, y) be a

function defined in R × R with values in L(B 1 , B 2 ). We say that an operator T

is a principal value operator in R with associated kernel K(x, y) if

Tf(x) = lim
ε→0

Tεf(x) = lim
ε→0

∫

|x−y|>ε

K(x, y)f(y)dy, x ∈ R, for f ∈ B 1 ⊗ L∞
c (R).

Definition 3.2: Let B 1 and B 2 be a pair of Banach spaces, and K(x, y) be a

function defined in (0,∞) × (0,∞) with values in L(B 1 , B 2 ). We say that an

operator Tloc is a local principal value operator in (0,∞) with associated kernel

K(x, y) if

Tlocf(x) = lim
ε→0

Tε,locf(x) = lim
ε→0

∫

|x−y|>ε
0<x/2<y<2x

K(x, y)f(y)dy,

x ∈ (0,∞), for f ∈ B 1 ⊗ L∞
c (0,∞).
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Proposition 3.3: Let B 1 , B 2 be two Banach spaces and K(x) be an odd or

even L(B 1 , B 2 )-valued kernel, satisfying ‖K(x)‖L(B1 ,B2 ) ≤ C|x|−1. Assume the

existence of the principal value operators T and Tloc with associated kernel

K(x − y) in R and in (0,∞), respectively. Then, the following hold:

(a) Let p be in the range 1 ≤ p < ∞. For any f ∈ LpB1 (R), there exists

Tf(x) = limε→0 Tεf(x) a.e. x ∈ R, if and only if for any f ∈ LpB1 (0,∞),

there exists Tlocf(x) = limε→0 Tε,locf(x) a.e. x ∈ (0,∞).

(b) Let p be in the range 1 < p < ∞. T is bounded : LpB1 (R) −→ LpB2 (R) if

and only if Tloc is bounded : LpB1 (0,∞) −→ LpB2 (0,∞).

(c) T maps L1B1 (R) into L1,∞B2 (R) boundedly if and only if Tloc maps L1B1 (0,∞)

into L1,∞B2 (0,∞) boundedly.

Proof: Let f ∈ L∞
c,B1 (R) and denote f̃(y) = f(−y). For every ε > 0 denote

Kε(x) = K(x)χ(ε,∞)(|x|). We can write

Tεf(x) =

∫ ∞

−∞
Kε(x − y)f(y)dy

=

∫ 0

−∞
Kε(x − y)f(y)dy +

∫ ∞

0

Kε(x − y)f(y)dy

=

∫ ∞

0

Kε(x + y)f(−y)dy + Tε(fχ(0,∞))(x)

=

∫ ∞

0

±Kε(−x − y)f(−y)dy + Tε(fχ(0,∞))(x)(3.2)

= ± Tε(f̃χ(0,∞))(−x) + Tε(fχ(0,∞))(x)

= ± Tε(f̃χ(0,∞))(−x)χ(−∞,0)(x) ± Tε(f̃χ(0,∞))(−x)χ(0,∞)(x)

+ Tε(fχ(0,∞))(x)χ(−∞,0)(x) + Tε(fχ(0,∞))(x)χ(0,∞)(x)

= I + II + III + IV.

For the terms II and III observe that

‖Tε(f̃χ(0,∞))(−x)χ(0,∞)(x)‖B2
≤

∫ ∞

0

‖Kε(−x − y)‖L(B1 ,B2 )‖f̃(y)‖B1 dyχ(0,∞)(x)

=

∫ ∞

0

‖Kε(x + y)‖L(B1 ,B2 )‖f̃(y)‖B1 dyχ(0,∞)(x)

≤
∫ ∞

0

C

x + y
‖f̃(y)‖B1 dyχ(0,∞)(x)(3.3)

=

(
∫ x

0

+

∫ ∞

x

)

C

x + y
‖f̃(y)‖B1 dyχ(0,∞)(x)
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≤
(

∫ x

0

C

x
‖f̃(y)‖B1 dy +

∫ ∞

x

C

y
‖f̃(y)‖B1 dy

)

χ(0,∞)(x)

= C(H1(‖f̃χ(0,∞)‖B1 )(x) + H2(‖f̃χ(0,∞)‖B1 )(x))χ(0,∞)(x),

where H1 and H2 are the Hardy operators defined in (3.1). By a similar calcu-

lation, we have

(3.4)
‖Tε(fχ(0,∞))(x)χ(−∞,0)(x)‖B2

≤
∫ ∞

0

C

|x| + y
‖f̃(y)‖B1 dyχ(−∞,0)(x)

≤ C(H1(‖fχ(0,∞)‖B1 )(|x|) + H2(‖fχ(0,∞)‖B1 )(|x|))χ(−∞,0)(x).

In order to handle term IV, we write

Tε(fχ(0,∞))(x)χ(0,∞)(x) =

∫

|x−y|>ε,0<y<x/2

K(x − y)f(y)dyχ(0,∞)(x)

+ Tε,loc(fχ(0,∞))(x)χ(0,∞)(x)

+

∫

|x−y|>ε,2x<y

K(x − y)f(y)dyχ(0,∞)(x).

By taking norms inside the integrals, the first and third terms in this sum verify
∥

∥

∥

∥

∫

|x−y|>ε,0<y<x/2

K(x − y)f(y)dyχ(0,∞)(x)

∥

∥

∥

∥B2
+

∥

∥

∥

∥

∫

|x−y|>ε,2x<y

K(x − y)f(y)dyχ(0,∞)(x)

∥

∥

∥

∥B2
≤ C(H1(‖f‖B1 )(x)χ(0,∞)(x) + H2(‖f‖B1 )(x)χ(0,∞)(x)).

We can proceed in the same way for I. Summarizing, we have obtained

Tεf(x) = ± Tε,loc(f̃χ(0,∞))(−x)χ(−∞,0)(x)

+ Tε,loc(fχ(0,∞))(x)χ(0,∞)(x) + Qε(f)(x),

where Qε is a sum of integral operators and

‖Qε(f)(x)‖B2 ≤C((H1(‖fχ(0,∞)‖B1 )(x) + H2(‖fχ(0,∞)‖B1 )(x))χ(0,∞)(x)

+(H1(‖f̃χ(0,∞)‖B1 )(|x|)+H2(‖f̃χ(0,∞)‖B1 )(|x|))χ(−∞,0)(x))

=F (x).

Then, (a) follows. By taking limits in (3.5), we get

Tf(x) = ± Tloc(f̃χ(0,∞))(−x)χ(−∞,0)(x)

+ Tloc(fχ(0,∞))(x)χ(0,∞)(x) + Q(f)(x),
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where Q satisfies

‖Q(f)(x)‖B2 ≤ F (x)

Then, (b) and (c) follow.

As we mentioned in the previous section, the clearest example of an operator

T in Proposition 3.3 is the case in which B 1 = B 2 and K(x) = x−1. Then we

get Theorem 2.2.

The g-functions gq
t and gq

x can be seen as vector-valued operators given by

convolution kernels. In both cases, B 1 = B , B 2 = LqB ((0,∞), dt/t). gq
t f(x) =

‖t∂tPt ∗ f(t, x)‖LqB((0,∞),dt/t) and gq
xf(x) = ‖t∂xPt ∗ f(t, x)‖LqB((0,∞),dt/t), where

t∂tPt ∗ f(x) =
∫RK1(t, x − y)f(y)dy, and t∂xPt ∗ f(x) =

∫RK2(t, x − y)f(y)dy.

Moreover, if f ∈ B 1 ⊗ L∞
c (R), then

∫RKi(t, x − y)f(y)dy = lim
ε→0

∫

|x−y|>ε

Ki(t, x − y)f(y)dy, i = 1, 2.

It is easy to see that K1(t,−x) = K1(t, x) and K2(t,−x) = −K2(t, x). More-

over,

(3.6)

‖K1(t, x)‖q
LqB((0,∞),dt/t)

=
1

π

∫ ∞

0

∣

∣

∣

∣

t
x2 − t2

(x2 + t2)2

∣

∣

∣

∣

q
dt

t

=
1

π|x|q
∫ ∞

0

∣

∣

∣

∣

u
1 − u2

(1 + u2)2

∣

∣

∣

∣

q
du

u
=

C

|x|q .

The same holds for K2 by an analogous calculation. Thus, the vector-valued

operators given by Ki, i = 1, 2 satisfy the hypothesis in Proposition 3.3.

The same arguments which lead to Proposition 3.3 easily give the following

proposition.

Proposition 3.4: Let B 1 , B 2 be two Banach spaces and K(x, y) be a L(B 1 , B 2 )-

valued kernel, satisfying ‖K(x, y)‖L(B1 ,B2 ) ≤ C|x − y|−1. Let us assume that

there exist the principal value operators T and Tloc (see Definition 3.2) with

associated kernel K(x, y) in (0,∞) (both T and Tloc). Then, the following hold:

(a) Let p in the range 1 ≤ p < ∞. For any f ∈ LpB1 (0,∞), there ex-

ists T f(x) = limε→0 Tεf(x) a.e. x ∈ (0,∞), if and only if for any f ∈
LpB1 (0,∞) there exists Tlocf(x) = limε→0 Tε,locf(x) a.e. x ∈ (0,∞).

(b) Given p ∈ (1,∞), T maps LpB1 (0,∞) into LpB2 (0,∞) for p ∈ (1,∞) if and

only if Tloc maps LpB1 (0,∞) into LpB2 (0,∞).

(c) T maps L1B1 (0,∞) into L1,∞B2 (0,∞) boundedly if and only if Tloc maps

L1B1 (0,∞) into L1,∞B2 (0,∞) boundedly.

Our method crystallizes in the following theorem.
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Theorem 3.5: Let B 1 , B 2 be a pair Banach spaces. Let us consider prin-

cipal value operators T and S on R and (0,∞), respectively, with associated

kernels T (x − y) and S(x, y), satisfying that ‖T (x − y)‖L(B1 ,B2 ) ≤ C|x − y|−1,

‖S(x, y)‖L(B1 ,B2 ) ≤ C|x − y|−1 and T being an odd or even function. Assume

‖T (x − y) − S(x, y)‖L(B1 ,B2 )χ(x/2,2x)(y) ≤ N(x, y), for x > 0,

where N is the kernel of a bounded operator on Lp(0,∞) for every p ∈ [1,∞).

Then:

(a) Given p ∈ [1,∞), for any f ∈ LpB1 (R), there exists Tf(x) = limε→0 Tεf(x)

a.e. x ∈ (0,∞), if and only if for any f ∈ LpB1 (0,∞), there exists Sf(x) =

limε→0 Sεf(x) a.e. x ∈ (0,∞).

(b) Let 1 < p < ∞. T maps LpB1 (R) into LpB2 (R) if and only if S maps

LpB1 (0,∞) into LpB2 (0,∞).

(c) T maps L1B1 (R) into L1,∞B2 (R) boundedly if and only if S maps L1B1 (0,∞)

into L1,∞B2 (0,∞) boundedly.

Proof: The theorem is a consequence of Propositions 3.3 and 3.4.

Given a > 1 and q ≥ 1 we will consider the operator

(3.7)

Lq,af(x) =

∫ ∞

0

Lq,a(x, y)f(y)dy,

Lq,a(x, y) = χ( x
a ,ax)(y)

1√
xy

(

1 +
(

log
(

1 +
xy

|x − y|2
))1/q)

.

It verifies the following lemma.

Lemma 3.6: Let q ≥ 1 and a > 1. The operator Lq,a is bounded on Lp(0,∞)

for 1 ≤ p ≤ ∞.

Proof: By the Marcinkiewicz interpolation theorem, it is enough to check that

Lq,a is bounded on L1(0,∞) and in L∞(0,∞). Clearly, we have

‖Lq,af‖L1 ≤
∫ ∞

0

‖Lq,a(·, y)‖L1(dx)|f(y)|dy ≤ sup
y∈(0,∞)

‖Lq,a(·, y)‖L1(dx)‖f‖L1

‖Lq,af‖L∞ ≤ sup
x∈(0,∞)

∫ ∞

0

|Lq,a(x, ·)|‖f(y)‖L∞dy

≤ sup
x∈(0,∞)

‖Lq,a(x, ·)‖L1(dy)‖f‖L∞.
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Lq,a(x, y) is a symmetric function, and for α ∈ (0, 1) such that 2α/q < 1 we get

sup
y∈(0,∞)

‖Lq,a(·, y)‖L1 =

∫ a

1/a

1√
z
dz +

∫ a

1/a

1√
z

(

log

(

1 +
z

|1 − z|2
))1/q)

dz

≤ C + C

∫ a

1/a

(

1 +
z

|1 − z|2
)α/q

dz < ∞.

4. Proof of Theorem 2.1

By Theorem 3.4 in [1], Rµ is a principal value operator in (0,∞) in the sense of

Definition 3.2, with associated kernel Rµ(x, y) given by

Rµ(x, y) = xµ+1/2

∫ ∞

0

d

dx

(

x−µ−1/2pµ(t, x, y)

)

dt

=
2µ + 1

π
(xy)µ+1/2

∫ π

0

(y cos z − x)(sin z)2µ

(x2 + y2 − 2xy cos z)µ+3/2
dz.

This kernel verifies (see Proposition 4.1 in [1]) |Rµ(x, y)| ≤ C/|x − y|. Hence,

by using Theorem 3.5, in order to prove Theorem 2.1, it is enough to show

∣

∣

∣

∣

Rµ(x, y) − 1

π

1

x − y

∣

∣

∣

∣

χ{x/2<y<2x}(y) ≤ CL(x, y),

where L is a kernel such that the operator Lf(x) =
∫ ∞
0 L(x, y)f(y)dy is bounded

on Lp(0,∞) for every p ∈ [1,∞). This inequality is a direct consequence of

Lemma 3.6 and the following estimate:

Rµ(x, y) =
1

π

1

x − y
+ O

( 1

x

(

1 + log+

√
xy

|x − y|
))

, x/2 < y < 2x.

See section 3 in [1] for the details.

5. Proof of Theorem 2.4

Let q satisfy 2 ≤ q < ∞.

5.1 Proof of Theorem 2.4 for gq
µ,t. Analogously to the classical case

gq
µ,tf(x) = ‖t∂tPµ,t(f)(x)‖LqB((0,∞),dt/t).

Lemma 5.1: The vector-valued operator t∂tPµ,t is given by the kernel

t∂tpµ(t, x, y).
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Moreover, ‖t∂tpµ(t, x, y)‖LqB((0,∞),dt/t) ≤ C/|x − y|.

Proof: It is known (see [6, (16.4)]) that the Poisson kernel associated with ∆µ,

given by (2.2), has the following expression for x, y, t ∈ (0,∞):

(5.1)

pµ(t, x, y) =
(2µ + 1)t

π
(xy)µ+1/2

∫ π

0

(sin z)2µ

(|x − y|2 + t2 + 2xy(1 − cos z))µ+3/2
dz.

Let f ∈ L∞
c (0,∞). Define

gµ(t, x, y, z) =
∂

∂t

( (2µ + 1)t

π
(xy)µ+1/2 (sin z)2µ

(|x − y|2 + t2 + 2xy(1 − cos z))µ+3/2

)

.

For fixed t and x in (0,∞),

|gµ(t, x, y, z)f(y)| ≤ C

t2µ+3
(xy)µ+1/2(sin z)2µ|f(y)| ∈ L1((0,∞)×(0, π), dy×dz).

This guarantees

∂tPµ,tf(x) =

∫ ∞

0

∂tpµ(t, x, y)f(y)dy,

where

(5.2)
∂tpµ(t, x, y) =

(2µ + 1)

π
(xy)µ+1/2

∫ π

0

(sin z)2µdz

(|x − y|2 + t2 + 2xy(1 − cos z))µ+3/2

− (2µ + 1)(2µ + 3)

π
t2(xy)µ+1/2

∫ π

0

(sin z)2µdz

(|x − y|2 + t2 + 2xy(1 − cos z))µ+5/2
.

The following estimate will be useful now and in the sequel. By the change

of variable

u = z

√

xy

(x − y)2 + t2
,

if 2β − α > 1, we get

(5.3)

(xy)µ+1/2

∫ π/2

0

z2µ+α

((x − y)2 + t2 + xyz2)µ+β
≤ C√

xy

1

((x − y)2 + t2)β−(α+1)/2
,

t, x, y ∈ (0,∞).

Then, by (5.3),

|t∂tpµ(t, x, y)| ≤ Ct(xy)µ+1/2

∫ π/2

0

z2µdz

(|x − y|2 + t2 + xyz2)µ+3/2

≤ Ct

|x − y|2 + t2
.



Vol. 157, 2007 RIESZ TRANSFORM AND g-FUNCTION 273

Hence, ‖t∂tpµ(t, x, y)‖Lq(dt/t) ≤ C|x − y|−1.

The proof of Theorem 2.4 will be concluded by an application of Theorem

3.5. The former lemma applies to S(x, y) = t∂tpµ(t, x, y), acting from B into

LqB ((0,∞), dt/t), with norm less than ‖t∂tpµ(t, x, y)‖LqB((0,∞),dt/t). By the esti-

mates in (3.6), it remains to compare the kernels of gq
t and gq

µ,t in the region

x/2 < y < 2x. This is done in the following lemma.

Lemma 5.2: There exists a constant C > 0 such that

‖t∂tpµ(t, x, y) − t∂tPt(x − y)‖Lq((0,∞),dt/t)χ(x/2,2x)(y) ≤ CLq(x, y),

where Lq is the kernel of a bounded operator on Lp(0,∞), 1 ≤ p < ∞.

Proof: Clearly, by Lemma 5.1 and the estimates in (3.6), it is enough to see

that there exists a > 1 with

(5.4) ‖t∂tpµ(t, x, y) − t∂tPt(x − y)‖Lq((0,∞),dt/t)χ(x/a,ax)(y) ≤ CLq,a(x, y),

where Lq,a is defined in (3.7). The value of a is fixed in Step 3 below. We split

the Poisson kernel as follows: pµ = pµ,1 + pµ,2 by splitting the integral at π/2.

Then we have

t∂tpµ,1(t, x, y)

=
(2µ + 1)

π
t(xy)µ+1/2

∫ π/2

0

(sin z)2µdz

(|x − y|2 + t2 + 2xy(1 − cos z))µ+3/2

− (2µ + 1)(2µ + 3)

π
t3(xy)µ+1/2

∫ π/2

0

(sin z)2µdz

(|x − y|2 + t2 + 2xy(1 − cos z))µ+5/2
.

Let us also consider the following kernels Ki, i = 1, 2. In the kernel t∂tpµ,1 we

replace sin z by z and denote the corresponding kernel by K1(t, x, y), i.e.,

K1(t, x, y)=
2µ + 1

π
t∂t

(

t(xy)µ+1/2

∫ π/2

0

z2µdz

(|x − y|2 + t2 + 2xy(1 − cos z))µ+3/2

)

.

The kernel

K2(t, x, y) =
2µ + 1

π
t∂t

(

t(xy)µ+1/2

∫ π/2

0

z2µdz

(|x − y|2 + t2 + xyz2)µ+3/2

)

is obtained from K1 by replacing 1 − cos z by z2/2.

For 0 < x/a < y < ax, we split the left-hand side in (5.4) as

‖t∂tpµ(t, x, y) − t∂tPt(x − y)‖Lq(dt/t) ≤ ‖t∂tpµ,1(t, x, y) − K1(t, x, y)‖Lq(dt/t)

+ ‖K1(t, x, y) − K2(t, x, y)‖Lq(dt/t) + ‖K2(t, x, y) − t∂tPt(x − y)‖Lq(dt/t)

+ ‖t∂tpµ,2(t, x, y)‖Lq(dt/t) = A + B + C + D.
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Step 1: A: Since sin z ∼ z and | sin z − z| ∼ z3, for z ∈ (0, π/2), by using the

mean value theorem and then (5.3), for 0 < ε < 2µ + 3,

(5.5)

|t∂tpµ,1(t, x, y) − K1(t, x, y)| ≤ Ct(xy)µ+1/2

∫ π/2

0

z2µ+2−εdz

(|x − y|2 + t2 + xyz2)µ+3/2

≤ Ct

(xy)1−ε/2(|x − y|2 + t2)ε/2
.

This inequality holds for every t, x, y ∈ (0,∞) with an absolute constant inde-

pendent of t, x and y. In particular, if we choose ε = (q − 1)/q for 0 < t <
√

xy

and ε = (q + 1)/q for
√

xy < t < ∞, we obtain

(5.6)

‖t∂tpµ,1(t, x, y)−K1(t, x, y)‖q
Lq(dt/t)

≤C

[
∫

√
xy

0

tq−1

(xy)(q+1)/2(|x − y|2 + t2)(q−1)/2
dt

+

∫ ∞

√
xy

tq−1

(xy)(q−1)/2(|x − y|2 + t2)(q+1)/2
dt

]

≤C(xy)−q/2.

Step 2: B: Again, using 1 − cos z ∼ z2/2 and |1 − cos z − z2/2| ≤ Cz4,

z ∈ (0, π/2), for β > 0, by the mean value theorem
∣

∣

∣

∣

1

(|x − y|2 + t2 + 2xy(1 − cos z))µ+β
− 1

(|x − y|2 + t2 + xyz2)µ+β

∣

∣

∣

∣

≤ Cxyz4

(|x − y|2 + t2 + xyz2))µ+β+1
.

From here it is easy to see that, for 0 < ε < 2µ + 3,

|K1(t, x, y) − K2(t, x, y)| ≤ C(xy)µ+3/2t

∫ π/2

0

z2µ+4dz

(|x − y|2 + t2 + xyz2)µ+5/2

≤ C(xy)µ+1/2t

∫ π/2

0

z2µ+2−εdz

(|x − y|2 + t2 + xyz2)µ+3/2
.

This is the estimate in (5.5), hence as in (5.6), we get

‖K1(t, x, y) − K2(t, x, y)‖Lq(dt/t) ≤ C/
√

xy.

Step 3: C: In this very part the comparison with the classical g-function

takes place. For fixed x, t, and y 6= x, we have, by the change of variable

u = z

√

xy

(x − y)2 + t2
,
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K2(t, x, y) =
2µ + 1

π
t∂t

(

t(xy)µ+1/2

∫ π/2

0

z2µ

((x − y)2 + t2 + xyz2)µ+3/2
dz

)

=
2µ + 1

π
t∂t

(

t

|x − y|2 + t2

∫ π
2

q
xy

|x−y|2+t2

0

u2µdu

(1 + u2)µ+3/2

)

.

As

1 = (2µ + 1)

∫ ∞

0

u2µ

(1 + u2)µ+3/2
du,

it implies

|K2(t, x, y)−t∂tPt(x − y)| =C

∣

∣

∣

∣

t∂t

(

t

|x − y|2 + t2

∫ ∞

π
2

q
xy

|x−y|2+t2

u2µdu

(1 + u2)µ+3/2

)∣

∣

∣

∣

≤ Ct

|x − y|2 + t2

∫ ∞

π
2

q
xy

|x−y|2+t2

u2µdu

(1 + u2)µ+3/2

+
C(xy)µ+1/2

(|x − y|2 + t2 + xy)µ+3/2

=N1(t, x, y) + N2(t, x, y).

By the same trick as the computation in (5.6),

‖N2(., x, y)‖Lq(dt/t) ≤ C

(
∫ ∞

0

∣

∣

∣

∣

t

|x − y|2 + t2 + xy

∣

∣

∣

∣

q
dt

t

)1/q

≤ C√
xy

.

To get the desired estimate for the kernel N1, we write, for some positive δ0 > 0,

‖N1(·, x, y)‖Lq(dt/t) ≤
(

∫ δ0
√

xy

0

|N1(t, x, y)|q dt

t

)
1
q

+

(
∫ ∞

δ0
√

xy

|N1(t, x, y)|q dt

t

)
1
q

= I + II.

For the first part we would like to have u2µ/(1 + u2)µ+1/2 decreasing for

u >
π

2

√

xy

(x − y)2 + t2

and t ∈ (0, δ0
√

xy). For negative µ this holds for every t > 0; for positive µ,

u2µ/(1 + u2)µ+1/2 is decreasing if u >
√

2µ. Hence it is sufficient that

u0 =
π

2

√

xy

(x − y)2 + t2
≥

√

2µ,

i.e.

t ≤
√

(
π

2
)2

1

2µ
xy − |x − y|2
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whenever t ≤ δ0
√

xy. The following lemma states the existence of such a δ0

(this only makes sense for positive µ).

Lemma 5.3: For µ positive, there exist a > 1 and δ0 = δ0(µ, a) such that for

x/a ≤ y ≤ ax, if t ∈ (0, δ0
√

xy), then

t ≤
√

(π

2

)2 1

2µ
xy − |x − y|2,

Proof: We would like to have

t ≤ δ0
√

xy ≤
√

(π

2

)2 1

2µ
xy − |x − y|2,

for x/a ≤ y ≤ ax. The inequality holds if and only if

x2 + y2 ≤
(

2 +
(π

2

)2 1

2µ
− δ2

0

)

xy.

As x/a ≤ y ≤ ax, this is achieved if we can write

x2 + y2 ≤ (1 + a2)x2
?
≤ 1

a

(

2 +
(π

2

)2 1

2µ
− δ2

0

)

x2 ≤
(

2 +
(π

2

)2 1

2µ
− δ2

0

)

xy.

Thus, it is enough to choose a > 1 and δ0 > 0 with

a + a3 ≤ 2 +
(π

2

)2 1

2µ
− δ2

0 .

We fix a and δ0 as in this lemma. Then in N1,

u2µ

(1 + u2)µ+1/2
≤ u2µ

0

(1 + u2
0)

µ+1/2
≤

√

|x − y|2 + t2

(|x − y|2 + t2 + cxy)1/2
≤ C

√

|x − y|2 + t2

xy
,

for u ≥ u0.

Finally,

Iq ≤ C

∫ δ0
√

xy

0

tq−1

(xy)q/2(|x − y|2 + t2)q/2
dt≤C

∫ δ0
√

xy

0

t

(xy)q/2(|x − y|2 + t2)
dt

≤ C(xy)−q/2 log
(

1 +
xy

|x − y|2
)

≤ C(Lq,a(x, y))q .

For the second part,

IIq ≤ C

∫ ∞

δ0
√

xy

tq−1

(|x − y|2 + t2)q

(
∫ ∞

0

u2µdu

(1 + u2)µ+3/2

)q

dt ≤ C

∫ ∞

δ0
√

xy

dt

tq+1

≤ C

(xy)q/2
.
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Step 4: D: Since for z ∈ (π/2, π), 1 − cos z ≥ 1, we have

|t∂tpµ,2(t, x, y)| ≤ Ct(xy)µ+1/2

∫ π

π/2

(sin z)2µdz

(|x − y|2 + t2 + xy)µ+3/2

≤ Ct

|x − y|2 + t2 + xy
,

and therefore, by proceeding as in (5.6),

‖t∂tpµ,2(t, x, y)‖Lq(dt/t) ≤ C

(
∫ ∞

0

tq−1dt

(|x − y|2 + t2 + xy)q

)1/q

≤ C√
xy

≤ CLq,a(x, y).

5.2 Proof of Theorem 2.4 for gq
µ,x. The proof of Theorem 2.4 for gq

µ,x is

a verbatim repetition of the proof for gq
µ,t in the former section. We leave the

details to the reader and we only sketch some steps. In analogy to the classical

case, gq
µ,xf(x) = ‖tAµ,xPµ,tf(x)‖LqB((0,∞),dt/t).

Lemma 5.4: The vector-valued operator tAµ,xPµ,t is given by the kernel

tAµ,xpµ(t, x, y). Moreover, ‖tAµ,xpµ(t, x, y)‖LqB((0,∞),dt/t) ≤ C/|x − y|.

Lemma 5.5: There exists a constant C > 0 such that

(5.7) ‖tAµ,xpµ(t, x, y) − t∂xPt(x − y)‖Lq((0,∞),dt/t)χ(x/2,2x)(y) ≤ CHq(x, y),

where Hq is the kernel of a bounded operator on Lp(0,∞), 1 ≤ p < ∞.

Proof: It goes along the same line as the proof of Lemma 5.2, by splitting pµ

as pµ,1 + pµ,2. Then we consider the kernels obtained by replacing successively

sin z by z and 1 − cos z by z2/2 in the kernel Aµ,xpµ,1.

6. Proof of Theorem 2.5

Let us start by going from (i) to (ii).

Proposition 6.1: Let f, g ∈ L2((0,∞), dx). Then

(6.1)
1

4

∫ ∞

0

f(x)g(x)dx =

∫ ∞

0

∫ ∞

0

t
∂

∂t
Pµ,tf(x)t

∂

∂t
Pµ,tg(x)

dt

t
dx.

Proof: Choose f, g ∈ C∞
c . According to [9, Lemma 2, p. 23] we have

Pµ,tf(x) = Hµ(Hµ(Pµ,tf(·)))(x) = Hµ(e−tzHµf(z))(x).
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Here Hµ denotes the Hankel transformation defined by [11, p. 127]

Hµ(f)(x) =

∫ ∞

0

√
xyJµ(xy)f(y)dy, x ∈ (0,∞).

Since by [11, Th. 5.4-1] x−µ−1/2Hµf is the Schwartz space and the function√
zJµ(z) is bounded in (0,∞), we can differentiate under the integral sign and

we obtain
∂

∂t
Pµ,tf(x) = Hµ(−ze−tzHµf(z))(x).

By Theorem 2.4, in the case B = R, g2
µ,t is bounded on L2(0,∞). Hence, we

have

(6.2)
∫ ∞

0

∫ ∞

0

∣

∣

∣

∣

t
∂

∂t
Pµ,tf(x)

∣

∣

∣

∣

∣

∣

∣

∣

t
∂

∂t
Pµ,tg(x)

∣

∣

∣

∣

dt

t
dx ≤ ‖g2

µ,t(f)‖L2(0,∞)‖g2
µ,t(g)‖L2(0,∞)

< ∞.

Thus we can change the order of integration and, by using the Parseval equality

for the Hankel transforms ([11, Th. 5.1-2]) we obtain

∫ ∞

0

∫ ∞

0

t
∂

∂t
Pµ,tf(x)t

∂

∂t
Pµ,tg(x)

dt

t
dx

=

∫ ∞

0

t

∫ ∞

0

Hµ(−ze−tzHµf(z))(x)Hµ(−ze−tzHµg(z))(x)dxdt

=

∫ ∞

0

t

∫ ∞

0

x2e−2xtHµf(x)Hµg(x)dxdt

=

∫ ∞

0

x2Hµf(x)Hµg(x)

∫ ∞

0

te−2xtdtdx

=
1

4

∫ ∞

0

Hµf(x)Hµg(x)dx =
1

4

∫ ∞

0

f(x)g(x)dx.

The equality holds for any f, g ∈ L2(0,∞) by density.

Assume that B has Lusin type q, where 1 < q ≤ 2. Thus, its dual space B ∗ has

Lusin cotype q′, and by Theorem 2.4 we have ‖gq′

µ,tg‖Lp′(0,∞) ≤ C‖g‖
Lp′B∗(0,∞)

.

On the other hand, (6.1) holds for any functions f = χA, g = χB with A

and B measurable sets of finite measure in (0,∞). Then (6.1) holds for simple

functions f ∈ LpB ((0,∞), dx) and g ∈ Lp′B∗ ((0,∞), dx). Thus, by duality and

Hölder we obtain ‖f‖LpB(0,∞) ≤ C‖gq
µ,tf‖Lp(0,∞) for simple functions, and by

the density of these functions, we get it for any function f ∈ LpB ((0,∞), dx).

This is the end of (i) implies (ii) of Theorem 2.5.
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Now we shall prove (ii) implies (i) of Theorem 2.5 by using the next Propo-

sition 6.2. Let B be a Banach space and 1 < q ≤ 2. We defineA = LqB ((0,∞), dt/t).

A function in A is a two-variable function, namely h(t, x), t, x ∈ (0,∞). Let us

consider the operator

Qµh(x) =

∫ ∞

0

t

∫ ∞

0

(∂tpµ(t, x, y))h(t, y)dy
dt

t
, x ∈ (0,∞),

for suitable functions h.

Proposition 6.2: Let B be a Banach space and 1 < p, q < ∞. The operator

gq
µ,t ◦ Qµ extends boundedly as an operator from LpA (0,∞) into Lp(0,∞).

In order to clarify the reading of the paper, we postpone the proof of this

proposition until the end of the argument.

Proof of Theorem 2.5, (ii) implies (i): Let 1 < p < ∞ and 1 < q ≤ 2 such

that

‖f‖LpB(0,∞) ≤ C‖gq
µ,t(f)‖Lp(0,∞).

Let f ∈ Lp′B (0,∞). We can choose h ∈ Lp
LqB((0,∞),dt/t)

, with

‖h‖Lp

L
qB((0,∞),dt/t)

(0,∞) ≤ 1

and

‖gq′

µ,t(f)‖Lp′(0,∞) =

∫ ∞

0

∫ ∞

0

t
∂

∂t
(Pµ,t(f)(x))h(t, x)

dt

t
dx.

By changing the order of integration and taking into account the identity

pµ(t, x, y) = Pµ(t, y, x), it follows that for good enough f and h,

‖gq′

µ,t(f)‖Lp′(0,∞) =

∫ ∞

0

∫ ∞

0

t
∂

∂t
(Pµ,t(f)(x))h(t, x)dtdx

=

∫ ∞

0

∫ ∞

0

t∂t

(
∫ ∞

0

pµ(t, x, y)f(y)dy

)

h(t, x)dxdt

=

∫ ∞

0

f(y)

∫ ∞

0

∫ ∞

0

t∂t(pµ(t, x, y))h(t, x)dxdtdy

=

∫ ∞

0

f(y)Qµh(y)dy ≤ ‖f‖
Lp′B∗(0,∞)

‖Qµh‖LpB(0,∞)

≤ C‖f‖
Lp′B∗(0,∞)

‖gq
µ,t(Qµh)‖Lp(0,∞)

≤ C‖f‖
Lp′B∗(0,∞)

‖h‖Lp

L
qB((0,∞),dt/t)

(0,∞) ≤ C‖f‖
Lp′B∗(0,∞)

,
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where in the penultimate inequality we have used Proposition 6.2. Therefore,B ∗ has Lusin cotype q′ and by [10, Corollary 2.6] we conclude that B has Lusin

type q.

Proof of Proposition 6.2: This proof mimics those of the boundedness of the

gq
µ functions and the Riesz transform. Let us write

gq
µ,t(ϕ)(x) = ‖s∂s(Pµ,s(ϕ)(x))‖Lq(ds/s) = ‖s∂s

∫ ∞

0

pµ(s, x, y)ϕ(y)dy‖Lq(ds/s).

Lemma 6.3: Let Ks,t(x, y) be the kernel of the operator: h −→ s∂s(Pµ,s(Qµh)).

Then ‖Ks,t(x, y)‖(Lq((0,∞),ds/s),Lq′((0,∞),dt/t)) ≤ C/|x − y|.

Proof: Let h be a B -valued continuous function with compact support in

(0,∞) × (0,∞). Note that

s∂s(Pµ,s(Qµh)(x)) =

∫ ∞

0

s∂spµ(s, x, y)

∫ ∞

0

∫ ∞

0

∂t(pµ(t, y, z))h(t, z)dzdtdy.

Hence

Ks,t(x, z) =

∫ ∞

o

s∂spµ(s, x, y)t∂tpµ(t, y, z)dy.

By the formula for kernels of a semigroup
∫ ∞

0

pµ(s, x, y)pµ(t, y, z)dy = pµ(s + t, x, z),

hence

Ks,t(x, z)

=st∂2
upµ(u, x, z)|u=s+t

=st∂2
u

[

2µ + 1

π
u(xz)µ+1/2

∫ π

0

(sin v)2µdv

(|x − z|2 + u2 + 2xz(1 − cos v))µ+3/2

]
∣

∣

∣

∣

u=s+t

=st
2µ + 1

π
(xz)µ+1/2

[

− 6(µ + 3/2)

×
∫ π

0

(s + t)(sin v)2µdv

(|x − z|2 + (s + t)2 + 2xz(1 − cos v))µ+5/2

+ 4(µ + 3/2)(µ + 5/2)

∫ π

0

(s + t)3(sin v)2µdv

(|x − z|2 + (s + t)2 + 2xz(1 − cos v))µ+7/2

]

=(K1
s,t + K2

s,t)(x, z).

First, let us note that |K2
s,t(x, y)| ≤ C|K1

s,t(x, y)|. By (5.3)

|K1
s,t(x, y)| ≤ Cst(s + t)

(|x − y|2 + (s + t)2)2
≤ C

st

(|x − y| + s + t)3
, s, t, x, y ∈ (0,∞).
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Therefore,
∫ ∞

0

(
∫ ∞

0

|Ks,t(x, y)|q′ dt

t

)q/q′

ds

s
≤

∫ ∞

0

(
∫ ∞

0

∣

∣

∣

∣

st

(|x − y| + s + t)3

∣

∣

∣

∣

q′

dt

t

)q/q′

ds

s

≤ C

|x − y|q .

In order to use Theorem 3.5, we consider Ks,t(x, y) as the kernel of an operator

LqB ((0,∞)
ds

s
) → LqB ((0,∞)

dt

t
);

its norm is less than ‖Ks,t(x, y)‖(Lq((0,∞),ds/s),Lq′((0,∞),dt/t)). Then we introduce

the analogue of Qµ in the classical euclidean case. Following [5], we define

Q(h)(x) =

∫ ∞

0

t∂tPt ∗ h(·, t)(x)
dt

t
, x ∈ R.

Q(h) is well defined for functions h in a dense family of LpA (R), for instance,

compactly supported functions on R × R+ . We write

gq
t (Qh)(x) = ‖s∂s(Ps ∗ (Qh))(x)‖Lq(ds/s).

In [5, Theorem 3.2] it is proved that ‖gq
t (Q(h))‖Lp(R) ≤ Cp,q‖h‖LpA(R). Con-

sequently, the map h 7→ gq
t (Q(h)) extends to a bounded map from LpA (R) to

Lp(R). We write

gq
t (Qh)(x) = ‖s∂sPs ∗ (Qh)(x)‖LqB((0,∞),ds/s).

The vector-valued operator s∂sPs ∗ (Qh)(x) is given by the kernel

Hs,t(x, y) =
1

π

2st(s + t)((s + t)2 − 3|x − y|2)
(|x − y|2 + (s + t)2)3

.

Moreover, as Ks,t(x, y), the kernel Hs,t(x, y) defines a bounded operator from

LqB ((0,∞), dt/t) into LqB ((0,∞), ds/s) with norm less than C/|x − y|.
Lemma 6.4: There exists a constant C > 0 such that

‖Ks,t(x, y) − Hs,t(x, y)‖Lq

Lq′ ((0,∞),dt/t)
((0,∞),ds/s)χ

(x/2,2x)
(y) ≤ CMq(x, y),

where Mq is the kernel of a bounded operator on Lp(0,∞), 1 ≤ p < ∞.

Proof: We can proceed as in the proofs of Lemmas 5.2 and 5.5: we write

Ks,t = K1
s,t + K2

s,t by splitting the integral in Ks,t at π/2. We replace sin z by

z in K1
s,t and then 1 − cos z by z2/2.
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